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1. I N T R O D U C T I O N 

Quantum effects that arise in strong-beam propagation in nonlinear optical 
media have been recently observed. The study of such effects is a rapidly 
developing field now, in both experiment and theory. 

In treating such problems, it is important to make a connection with semi-
classical wave equations used commonly in classical nonlinear optics, and 
quantum-field operator formalism used in quantum optics. Actually, both 
methods were applied in the late 1970s to treat superfluorescence from a 
collection of inverted two-level atoms in the absence of any resonant cavity 
that would define spatial modes [ 1 - 4 ] . It is well-known that the Heisenberg 
equations for quantum fields are identical to Maxwell's equations coupled 
with material equations [ 5 - 7 ] . An advantage of making this connection is 
that one can exploit intuition about classical wave propagation in the study of 
quantum propagation. This includes group-velocity dispersion, phase match-
ing, transient effects, temporal and spatial coherence properties, etc. 

This chapter will discuss two important examples of propagation pheno-
mena: stimulated Raman scattering (SRS), and squeezed light generation by 
traveling-wave, optical parametric amplification (OPA). In both cases, a pump 
laser pulse enters a nonlinear medium, and spontaneous generation and 
amplification lead to a macroscopic pulse at a frequency different from the 
pump. At low temperature, purely classical electromagnetic theory cannot 
account for the initiation of the scattering due to the lack of a medium polari-
zation oscillating at frequencies other than that of the pump. The generated 
pulse, which has large intensity, is amplified zero-point noise (associated with 
the field and /or medium). SRS is an example of a gain process, i.e., phase-
insensitive process, while ΟΡΑ is a parametric, i.e., phase-sensitive, amplifi-
cation process. The importance of this distinction has been emphasized 
recently [8] . 

The main implication is that SRS can be described by an effective classi-
cal, stochastic process for the purpose of understanding its photodetection, 
whereas Ο Ρ Α leads to intrinsically quantum effects, including sub-shot noise 
[9], squeezing [10,11], etc. Nevertheless, even the SRS effect is a quantum one; 
the energy shows macroscopic fluctuations [12] and the noise strength in the 
equivalent classical theory is proportional to h [13]. 

These two cases were chosen in order to illustrate the difference in physical 
phenomena occuring in two classes of traveling-wave light amplifiers. Many 
nonlinear quantum effects are also known to occur in resonant optical cavities; 
these will not be explicitly discussed here since they have been reviewed several 
times previously [ 1 4 - 1 7 ] . 

Section 2 presents a discussion of fluctuations of the quantized electro-
magnetic field. This basic formalism is applied to SRS and OPA in Sections 3 
and 4, respectively. These two sections can be read independently. 
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2. Q U A N T I Z E D E L E C T R O M A G N E T I C F I E L D A N D 
ITS M E A S U R E M E N T 

2.1 . Field Quantization [ 5 - 7 ] 

This section deals with fundamental concepts of the electromagnetic field, 
and its measurement by means of photoelectron counting. Fundamental 
concepts relating to the quantized electromagnetic field will be introduced, 
and they will be used later in the study of electromagnetic fields interacting 
with matter. Further, the photon flux, optical spectrum, and photon flux 
spectrum will be defined. These quantities are measurable by means of photo-
electron counting, and provide a method of determining the statistical prop-
erties of the electromagnetic field. 

The electromagnetic field is described by two vector fields, the electric field 
E(i,r) and the magnetic induction B(f,r). At each space point r, the quantities 
E(r, r) and B(r, r) are operator variables. It is convenient to use creation and 
annihilation operators a(k, λ) and a

f
(k ,A) to describe the field. The transfor-

mation from E(i,r) and B(i,r) to a(k,A) and a
f
(k,À) involves Fourier trans-

forms. Since the Fourier transform will be used extensively in this chapter, 
we will give the basic definitions here. 

The temporal Fourier transform of a function or operator/(f) is defined as 

/ ( ω ) = J dtexp(iœt)f(t), (1) 
- o o 

and will be consistently denoted by the tilde symbol. The inverse transform is 

00 

1 
dœexp( — iœt)f(œ). (2) 

Of interest will be also the analytic signals: The positive-frequency part 

OO 

1 
/<*<·->= 2„ 

and the negative-frequency part 

άω exp( — iœt) / (ω), (3) 

f
(
-\t) = i - j dœexp( + iœt)p(œ). (4) 

The transformations between the fields E(i, r) and B(r, r) and the operators 
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a(k, λ) and a
T
(k , / ) are given by spatial Fourier transforms: 

λ 
E(f,r) = 

B(i,r) = 

(2π)
3 

1 

( 2 ^ 

d
3
kΣ ^(k)e(k, λ) e x p ( - icot + /k · r) a(k, / ) + h.c , (5) 

d
3
/ c£#(k ) —- χ e(k , / l)exp(-/coi + ik · r )a (k , / ) + h.c , (6) 

where e(k, / ) denotes the polarization vector labeled by polarization index A, 
and the frequency ω is connected with wavevector k by ω = c\k\. The function 
g(k) is given by g(k) = — i(hc\k\)

1/2
. The part of the field proportional to the 

annihilation operator involves positive frequencies only. It is thus an analogue 
of the positive-frequency analytic signal, Eq. (3). The commutator between 
a(k, λ) and a

f
(k, λ) is 

[ a ( k , λ \ a\k\ / ' ) ] = ΐ(2π)
3
 δ

3
(k - k ' ) . (7) 

In many optical applications, only a narrow band of frequencies and 
wavevectors is of interest. The paraxial approximation to the wave equation is 
a formalization of these ideas. Suppose that we are interested in a laser beam 
of frequency ω propagating in the direction parallel to a vector K. Often, it will 
be assumed that the direction of propagation coincides with the ζ axis. Of 
course, a laser beam cannot be purely monochromatic; the frequency ω should 
be considered as a central frequency allowing for some frequency spread. Also, 
because of diffraction, the direction of propagation is not perfectly defined; the 
light beam spreads around the central direction of propagation. In order to 
describe a beam, we will write the vector k as 

k = Κ + q, (8) 

where ω = c\K\ and the vector q, which describes the spread in wavevectors, 
has length much smaller than the vector K. The expansion Eq. (5) takes the 
form 

(2π) d
3
g£#(K)€(q ,A)exp[ - /<^ i + + Q) · r M q > ^ ) + h.c , (9) 

where c(q, λ) = a(K + q, λ) and e(q, λ) = e(K + q, λ). 
Since |K + q |

1 /2
 varies slowly for |q| « |K|, we have approximated the 

function g(k) by its value at the central vector K: g(k) = g(K). 
Two quantities that will be of interest to us are the positive- and negative-

frequency parts of the electric field. By definition, the positive-frequency part, 
denoted by E

( + )
(r,r), is the part that is proportional to the annihilation 

operators. The remaining part, denoted by E
( _ )

( i , r ) , is called the negative-
frequency part of the field. 

We will expand the frequency |Κ + q | in q up to the second order. Denote by 
q L and q T the parallel and perpendicular components, respectively, of q 

raymer
Pencil
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relative to K. Then, IΚ + q| ^ |K| + |q L| + q | / (2 |K|) + q£/(2|K|). We now will 
neglect the term |q L|

2
/ (2 |K|) as compared to |qL| , but retain the term q | /(2 |K|). 

This is the quantum version of the slowly-varying-envelope approximation 
(SVEA). In this approximation, the field operators are related to creation and 
annihilation operators by Eq. (9) rather than Eq. (5), but otherwise the struc-
ture of the theory remains unchanged. 

It is important to know the commutation relations for the vector com-
ponents of the electric field in the SVEA at different space points at the same 
time. Straightforward calculation gives 

[E;.+»(i,n), r
2 ) ] = l 0 ( K ) |

2
( \ j - ^ ) e x p [ / K · ( r , - r 2 ) ] S

3
{TL - r 2 ) . 

V K J
 (10) 

In order to get this result, we have extended the range of integration to all 
values of q. This can be done provided the distance between the points rl and 
r 2 is much larger than the inverse of the maximal value of |q|. Thus, the 
approximation introduced does not allow one to study the behavior of the 
fields at short distances. 

In the slowly-varying-envelope approximation, the electric field satisfies the 
approximate version of the wave equation: 

2i^i - ϋκξ- + V*)v
 + )

(t,z) = 0, (11) 
dt dz 

where ζ is the direction of Κ and Vj is the transverse part of the Laplacian. 
In this chapter, we will discuss effects in which the diffraction plays a 

marginal role only. We will therefore neglect the transverse part of the 
Laplacian. The remaining part of the wave equation contains the ζ derivative 
only. In other words, such an approximation reduces the problem of wave 
propagation to a purely one-dimensional problem. This is an important case, 
and will be discussed more carefully. 

Suppose the electromagnetic field is restricted to a pencil-shaped volume 
with the transverse cross sectional area equal to A. Suppose, moreover, that 
the field does not change much across the transverse cross section. In such a 
case, one may introduce the average field, which depends on the longitudinal 
coordinate only: 

1 
d

2
pE(t,z,p). (12) 

The decomposition of the average field into plane waves takes now the form 

E(i,z) = i — Yg(K)€(K,À)expl-iœt + i(K + q)z]c(q,k) + h.c , (13) 
2π A 

where q now denotes the one-dimensional wavevector, c(q, X) = c(q, q T ~ 0 , λ). 
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The Hamiltonian for the electromagnetic field can be expressed in terms of 
the one-dimensional creation and annihilation operators as 

A 
^ Σ ^ ( * , λ ) φ , 4 (14) 
2π Λ 

This one-dimensional Hamiltonian generates one-dimensional equations 
of motion. In all cases discussed, we will not consider polarization changes; 
electric fields will have one polarization component only. We will therefore 
skip the polarization index λ. The procedure of neglecting electric-field po-
larization and restricting the propagation to one dimension only leads to a 
simplified, scalar version of electrodynamics. In this case, the commutation 
relation for the field operators is 

[£<
 +
 >( t,z),£<->(f',z')]

 2 n hw Ζ 

-1 ί' — 
c 

(15a) 
cA 

where ω denotes the central frequency. In the frequency domain, this becomes 

[£(v,z), £
f
(v ' , z ' ) ] - 2n^^jô(v - v ')exppv(z - z')/c]. (15b) 

The electromagnetic fields discussed in this chapter are not free fields, but 
are generated by sources. It is the polarization of the medium that usually 
provides such a source. In this case, the slowly-varying-envelope field satisfies 
an equation that is a direct consequence of the wave equation with a source for 
the electric field: 

2i™l + 2iKplE<
 +

 %z)= -%ω
2
Ρ^%ζ). (16) 

"
z
 dt dz J c

z 

Here P
( + )

(r,z) = Nex
{ + )

 denotes the slowly varying envelope of the positive-
frequency part of the medium polarization oscillating with central frequency 
ω, where N, e, and

 + )
 are respectively the density, charge, and coordinate of 

electrons. It should be pointed out that there are some subtle questions that 
arise when a nonlinear, dispersive dielectric is quantized, having to do with the 
proper choice of conjugate canonical variables. Reference 18 should be 
consulted for a discussion of using the macroscopic fields, rather than the 
microscopic fields as was done here. 

2.2. Photon Flux and Optical Power Spectrum 

The electric field at optical frequency varies too fast in time to be measured 
by any macroscopic device. Instead, slowly varying quantities such as photon 
flux, optical power spectrum, and flux power spectrum are measured in typical 
optical experiments. 
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The operator corresponding to total flux (photons per second) in a quasi-
monochromatic, quasi-collimated beam with cross-sectional area A and 
center frequency ω, is 

cA 
/ ( 0 = 2 ^ — ζ ) £

< + )
( ί , 4 (17) 

The expectation value of the photon flux as just defined is measured by 
photocounters by counting the average number of photoelectrons due to 
impinging photons. 

The spectrum of light provides information about the frequency com-
position of the light beam. The optical spectrum is the power spectrum of the 
field fluctuations. It is denoted by S(v), where ν is an angular frequency, and is 
defined by 

CE(T)e^dz, (18) 

where the two-time field autocorrelation function is 

C £( T ) = < £
(
- > ( Î , Z ) £

( + )
( Î + T , Z ) > , (19) 

and is assumed not to depend on t in the case of stationary fields. The integral 
of the spectrum over frequency equals the total average flux: 

</> = S(v)dv. (20) 

It is often convenient to express the spectrum in terms of the two-frequency 
field correlation function, defined in terms of the Fourier transform of the field 
operator. It is easy to show for a stationary process that 

2(2nhœ^ 

~c~Ä 
<£t(v,z)£(v',z)> = 4 π

2
( )S(v)ô(v - ν'), (21) 

where the transforms are defined as in Eq. (1). This formula gives an alternative 
way of calculating the power spectrum. 

2.3. Flux Power Spectrum 

Additional characterization of the light beam can be found by measuring 
the flux power spectrum. As will be shown in Section 4, squeezing of light can 
be observed by measuring this spectrum. For a steady-state light source, the 
intensity typically fluctuates on a time scale of the order of the inverse optical 
bandwidth. This leads to fluctuations of the photocurrent from an optical 
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detector. A common way to observe such fluctuations is with a radio-frequency 
(rf) spectrum analyzer, which measures the Fourier transform of the photo-
current during some long time period. If the photodetector has unit quantum 
efficiency, then every incident photon produces one electron. In this case, 
the statistical properties of the photoelectrons are identical to those of the 
photons. We will treat this case for simplicity. Strictly speaking, a rigorous 
treatment is based on the probabilities of producing various numbers of 
photoelectrons; it reduces to our simple version for unit detector efficiency 
[ 1 9 - 2 1 ] . 

Theoretically, the power spectrum P(v) of the photon noise is evaluated as 
the Fourier transform of the two-time autocorrelation function of the photon 
flux noise: 

P(v) C,{x)e"
z
dT, (22) 

where the flux autocorrelation function is 

Q ( T ) = < Γ Δ / ( ί ) Δ / ( ί + τ)> 

[<T£<->(t,z)£<
 +
 >(t,z) 

_ ( cA ^
2 

\2nhcol 

χ E
{
-\t + τ , ζ )£

( + )
(ί + τ,ζ)> - <£

(
->(ί, ζ ) £

( + )
(ί, z )>

2
] . (23) 

The brackets indicate a quantum expectation value and the quantity 
AI(t) = I(t) — </(i)> is the deviation of the photon flux from the mean value. 
The electric field operator is to be evaluated at the detector. This formula ap-
plies to fields with bandwidth narrow compared to the optical frequency. The 
symbol Τ indicates time ordering [19], which is defined by 

TE^(t29z)E
{
-\tuz) = E<-\tl9z)E<->(t2,z) (t, < t2)9 

(24) 

T&
 +

 \tl9z)E<
 +

 \t29z) = E^(t29z)E^(tl9z) (t, < t2). 

Before applying the time ordering in Eq. (23), the field commutator equa-
tion (15) is used to put the fields in the normal order:

 + +
 It is 

important to note that the ordering refers to the field at the detector, not, for 
example, at the input to the nonlinear medium. The correlation function 
becomes 

Q W = {TE'-\t9z)E^\t + τ,ζ)£<
 +
 >(ί + τ,ζ)Ε<

 +
 >(ί,ζ)> 

+ < / > < 5 ( τ ) - < / >
2
. (25) 
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The effect of the time-ordering operator in this equation is to leave the 
operators as written for τ > 0 and to move the τ variable to the outside 
positions of the expectation value for τ < 0. This equation can be written 
compactly for arbitrary τ as 

CJ(T) = </>(5(τ) + <Τ :Δ / ( ί )Δ / ( ί + τ):>, (26) 

where the double dots indicate normal ordering at the detector. This means 
that all annihilation operators are placed to the right of all creation operators 
in the expectation value. The first term in Eq. (26) is the shot noise associated 
with the random generation of discrete photoelectrons in the detector. The 
second term is the noise in excess of the standard shot noise, and is called wave 
noise. It is associated with the classical-like fluctuations of the electric field 
amplitude. The shot-noise level was believed until recently to be the lower 
bound for noise in photodetection. In many applications, it imposes a limit to 
the sensitivity of optical measurements. 

For the case of an ideal, monochromatic, coherent light beam, i.e., a single 
mode in a coherent state, the wave-noise term is zero, and only the shot noise is 
present. The flux power spectrum is then simply 

PcoM = </>, (27) 

that is, white noise with spectral density (per radian/second) equal to the 
average photon flux. The detector has been assumed to have infinite 
bandwidth. Actually the power spectrum should be multiplied by the detector 
frequency-response function, which rolls off at high frequency [19]. 

For thermal light, it is well-known that the higher-order correlation func-
tions can be expressed in terms of the two-point correlation function [22]. 
This is the quantum analog of the Gaussian moment theorem in classical 
random processes [23]. Thus, the flux correlation can be expressed in terms 
of the field correlation as 

C, (T ) = < / > δ(τ) + ^-J\CE{x)\
2
. ( 2 8 ) 

This implies that, for thermal light, the rf flux spectrum is given in terms of the 
optical spectrum as 

^Th(v) = </> + 2π J d v ' S i v W - v). (29) 

This illustrates that the fluctuations at frequency ν arise from temporal beating 
between spectral components at v' and v' — v. Note that the flux noise density 
is greater than the shot-noise level at all frequencies. This is characteristic of 
so-called classical light. Later, we will see a case of nonclassical light where the 
noise density is less than the shot-noise level. 
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3. Q U A N T U M F L U C T U A T I O N S IN S T I M U L A T E D 
R A M A N S C A T T E R I N G 

In this section, stimulated Raman scattering will be discussed as an example 
of phase-insensitive amplification. The Raman effect is one of the first discov-
ered and best-known nonlinear optical processes. It is used as a tool in spec-
troscopic studies, and also in tunable laser development, high-energy pulse 
compression, etc. Several review articles exist that summarize the earlier work 
on the Raman effect [24,25] . Here, we will concentrate on the quantum nature 
of the process (reviewed in detail in [25]), and discuss its implications. 

The geometry of a typical Raman experiment is presented in Fig. 1. The 
Raman-active medium forms a pencil-shaped amplifier. A strong pump beam 
is injected from one side and on the other side both pump wave and Stokes 
wave (of lower frequency) are observed. 

The Raman effect belongs to a class of nonlinear optical processes that can 
be called quasi-resonant. Although none of the fields is in resonance with the 
atomic or molecular transitions, the sum or difference between two optical 
frequencies equals a transition frequency. This is the reason why the medium 
polarization cannot be eliminated from the equations, and remains as one of 
the dynamical variables. 

3.1 . Raman Medium 

We will begin our discussion by considering a specific example of a Raman-
active molecular material subject to electromagnetic fields. The medium con-
sist of molecules; thus, it will be modeled by electronic coordinate χ and 
momentum ρ and also nuclear coordinate X and momentum P. When a 
molecule interacts with an electromagnetic field, its electronic distribution 
changes, leading to a force acting on the electrons and nuclei, which therefore 
start to vibrate. It should be stressed that all frequencies are far off resonance 
with any intermediate molecular states. The change of internuclear coor-

I ι 
z=0 z=L 

Fig. 1. A schematic illustration of the geometry of Raman scattering. The interaction volume 
containing a Raman-active medium is a cylinder of length L and transverse cross section A. A 
laser pulse of mean frequency coL is incident on the left-hand face of the cylinder. The Stokes pulse 
at frequency cos exits through the right-hand face of the cylinder. 
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dinates leads to a change of the electronic polarizability. The whole process is 
described by the following Hamiltonian: 

H = He + HF + HN + Hint. (30) 

The field part HF describes the energy of the free electromagnetic field, as 
discussed in Section 2. The nuclear part HN describes the vibrations of the 
nuclei in the molecule, and for low vibrational levels is given by a harmonic 
oscillator Hamiltonian: 

ffN = P
2
/2M + (KN/2)X\ (31) 

and the resonance frequency is ωκ = ( K N / M )
1 / 2

. In the dipole approxi-
mation, the interaction part is the energy of the electronic polarization in the 
presence of the electric field E: 

Hint=-exE, (32) 

where e is the charge of the electron and χ is the displacement of the electron 
from the equilibrium position. The electronic Hamiltonian is taken to be that 
of a harmonic oscillator. This is the Lorentz model for electronic motion, and 
is valid for weak excitation. The molecules are Raman active if the restoring 
force acting on the electron depends on the internuclear separation X, thus 
providing a coupling between the nuclear and the electronic motion. Hence, 
the electronic energy is 

He = p
2
/2m + k(X)x

2
/2 = p

2
/ 2 m + m | > e ( X ) ]

2
x

2
/ 2 , (33) 

where m is the electron mass and œe(X) is the resonant frequency. 
In the Raman problem, the electric field consists of two parts, well separated 

in frequency. The first component, which is called the pump (or laser) field, has 
a frequency coL not very close to any electronic resonance frequencies. The 
pump field is assumed to be strong, and we will not take into account its 
changes. In other words, we will treat it as an external classical field, not being 
affected by the interaction. The second component of the electromagnetic field 
is called the Stokes field. Its frequency œs is such that 

ajs = œ h - œ R . (34) 

Thus, the field is written as a sum of two components: 

Ε = E
(

L

+)
e-

icou
 + E

{

s

+)
e-

ic)st
 + h.c. (35) 

It is the Stokes wave we will be mostly interested in. A wave at the Stokes 
frequency may be injected into the Raman-active medium; in this case, it will 
be amplified, or, what is more interesting to us, the Stokes wave may be 
spontaneously generated by the medium without any injected signal. In order 
to describe the spontaneous generation of the Stokes field, we must use the 
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quantum theory of the electromagnetic field as well as the quantum theory of 
matter. 

We will proceed with a discussion of the equations of motion derived from 
the Hamiltonian, Eq. (30). We start with the equation of motion for the 
electronic coordinate, in the Heisenberg picture: 

x = -œl{X)x + (e/m)E, (36) 

where coe(X) = >Jke(X)/m is the electronic resonance frequency. Since the field 
does not contain frequency components in resonance with the electronic 
frequencies, the molecular coordinate oscillates with the frequency of the 
driving fields. Thus, after introducing the positive- and negative-frequency 
components of x: 

x = x ^ e -
i < au

 + x
{

s

+)
e-

i(0st
 + h .c , (37) 

Eq. (36) is solved adiabatically to give 

ex
(

L

+)
 = oc(X)E

(

L

+
\ (38) 

where the electronic polarizability α depends on internuclear coordinate: 

a(X) 
e

2 

2m<we(X) 

1 1 

+ _o>e(X) - fflL coe(X) + cuL 

(39) 

The internuclear coordinate and momentum obey the Hamiltonian equa-
tions of motion in the Heisenberg picture. The interaction energy appearing 
in these equations now depends on x. The internuclear coordinate thus obeys 

χ = _ ω 2 χ + _L J _ ίβχ(Χ)ΕΙ (40) 

Following the standard adiabatic procedure, we now insert the expression for 
χ (Eq. (38)), neglect all off-resonance terms, and neglect terms corresponding to 
frequency shifts (ke(X)x

2
) [27] . Representing the nuclear motion in terms of 

slowly varying variables: 

χ = Qîe-
i(ORt

 + h .c , (41) 

we find the central equation of motion for the Raman problem: 

o'-sbs^)^"' , 4 2 ) 

Alternative derivations of this equation are given in [26] and [28]. 
Homogeneous broadening of the Raman transition, due to molecular col-

lisions, is modeled by adding both a term that leads to damping of Q(t) at a 

raymer
Pencil
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rate Γ, and a term representing the random fluctuations due to the collisions: 

v-i^iS)*'*-'-™'*™ ,43) 

F(t) and its adjoint are quantum-statistical Langevin operators describ-
ing the collision-induced fluctuations. They are taken to be delta correlated: 

(F\t)F(t')) = 2F(h/2mœRp)ô(t - ί'), 

<F(t')F\t)} = 0, (44) 

<F(i)F(t')> = 0. 

Higher correlation functions are assumed to be derived from Eq. (44) with the 
help of the Gaussian property. This guarantees that the equal-time commuta-
tion relations between the operators Q(t) and Q\t) are preserved [22,26] . 

Equation (43) describes the response of a single molecule to the electric field 
and to collisions. To treat the spatial propagation of the electromagnetic field, 
it is convenient to formulate the atomic response in terms of collective 
molecular operators defined as 

ß(t,z)=-Zß-(t). (45) 
The sum is over all molecules lying within a thin transverse slice of the pencil-
shaped medium, with thickness Δζ, centered at the longitudinal position z. The 
average number of molecules η in such a slice is Ν Α Δζ, where Ν is the number 
density of molecules, and A is the transverse cross-sectional area of the 
medium. The thickness of a slice is assumed to be much smaller than a Stokes 
wavelength (Δζ « A s), while the volume of a slice is much greater than a cubic 
wavelength of the Stokes radiation (A Az » λ$). This justifies the neglect of 
the near-field dipole-dipole interactions (Νλ$ « 1), while allowing for a 
continuum description of the medium (NAAz » 1). In the continuum limit, 
the collective operator has the property 

<ßt(0,z')6(0,z")> = (h/2mœRp)ô(z' - ζ"), (46) 

where ρ = ΝΑ is the linear density of molecules along the pencil-shaped 
region. Similarly, the collective Langevin operators F(i,z), F^(t\z'\ defined 
analogously to Eq. (45), obey 

<F
t
( i ' , z ')F(i", z")> = 2Y{h/2mœRp) ô(t' - t") δ(ζ' - ζ"), (47) 

and the remaining bilinear products have a zero expectation value. 
The equation describing the evolution of the Stokes field is that for 

propagation, as given in Eq. (16). The source of the Stokes field is given by the 
electronic polarization of the medium at the frequency ω 8 . The polarization, 



2 0 0 J. Mostowski and M. G. Raymer 

however, can be expressed by the nuclear coordinate Q{t) with the help of 
Eqs. (38) and (39). Then, writing EL for E

(

L~\ 

iK2Qi(t,z)EL(t,z), 

(48) 

Γβϊ ( ί , ζ ) - ÎKlE
{

s-\t,z)Et(t,z) + F%z)9 

where κχ = (da/dX)/(2œRM) and κ2 = 2n(œs/c)N(da/dX). 
This set of equations constitutes the formal description of stimulated 

Raman scattering (SRS). It should be noted that several effects have been 
neglected. We treat the pump field as a given external agent and therefore we 
neglect possible saturation effects. Also, the harmonic-oscillator description of 
the molecular vibrations does not allow for description of a possible signifi-
cant population of the vibrationally excited state. Therefore, the preceding 
description is applicable to the case when the Stokes field is relatively weak. 

The form of Eq. (48) is the same as in semiclassical theories of the stimulated 
Raman effect [25] . The only difference is the operator nature of both the 
Stokes field Es and Raman variables Q. We will see that this fully quantum 
description leads to results not described by semiclassical treatments. Further 
discussion of these equations can be found in Ref. 26. 

3.2. Solutions of S R S Equations 

The set of equations (48) for the polarization field and for the electric field 
can be solved exactly in analytic form for arbitrary time dependence of the 
laser field EL(t,z) in the case of forward Stokes emission in a dispersionless 
medium. The initial conditions for the case we are interested in are obtained by 
noting that, in a dispersionless medium, the laser field £ L( i , z) depends only on 
the local time variable τ = t — z/c9 and thus a laser pulse whose leading edge is 
at t = z/c leaves the atomic operator β(τ,ζ) unperturbed for τ < 0. Thus, the 
initial condition for the operators β(τ ,ζ) (see Eq. (46)) becomes 

<ef(t = 0 ,ζ)β(τ = 0,z')> = (h/2mœRp)ô(z - z'\ (49) 

where ρ is the linear density of molecules. Also, that the Langevin force is 
stationary implies that 

<F
t
( t , Z ) F ( T ' , Z ' ) > = 2T(h/2mœRp) δ (ζ - ζ') δ(τ - τ'). (50) 

The initial value for the Stokes field £ S( T , 0) is specified at the input face of 
the medium, ζ = 0, for all times τ. This means that backward Stokes emission 
is explicitly ignored. Depending on the initial state of the radiation field, this 
condition describes either an externally incident Stokes wave, which can 

d 1 d 

dz c dt 

raymer
Pencil
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experience Raman amplification, or the vacuum field from which Stokes 
emission can build up. 

With these initial conditions, the set of equations has the following solution 
[28] : 

Ε Π τ , ζ ) = - /K2£L(T)exp( 

ζ 

- Γ τ ) j*dz' Ô
f
(0 ,z ' ) 

χ / 0 { [ 4 Κ ικ 2 ( ζ - z ' )p (T) ] 1' 2} 

+ (KlK2z)
l
'
2
EL(x) ίίτ'εχρ[ —Γ(τ — τ')] 

χ £*(T')4~V ,0) 

- I K 2 £ L ( T ) 

, ^ { [ ^ ^ ( p M - p d ' ) ) ]
1

' 

ζ τ 

dz 

ο ο 

[ Ρ ( τ ) - Ρ ( τ ' ) ] 1 /2 

ί ί τ ' β χ ρ [ - Γ ( τ - τ ' ) ] ί ν . ζ ' ) 

χ / 0 { [ 4 κ ι Κ 2( ζ - ζ ' ) ( ρ ( τ ) - ρ ( τ ' ) ) ]
1 / 2

} · 

Here, 4(χ) are modified Bessel functions and 

Ρ(τ) 

τ 

jdT'|£L(t')l
3 

(51) 

(52) 

is the power of the laser field integrated up to time τ. This solution was 
presented in the quantum case first by von Foerster and Glauber [29]. 

The part of the field that is due to the source, namely, Q
!
(0, ζ) and F*(τ, ζ), 

is proportional to Planck's constant ft, as seen from Eqs. (49) and (50). This 
shows that the Stokes emission is a quantum process—without the quantum 
initiation there would be no spontaneous emission of the Stokes field. 

3.3 . Average Photon Flux of S R S 

Various properties of the Stokes field will be discussed now. The basis of the 
discussion is the solution (51) to the operator equations describing the field. 
The results presented in this section follow Ref. 26. 

One of the most important characterizations of the Stokes field is the 
average intensity of the Stokes beam in the forward direction, which may be 
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obtained from Eq. (51) by calculating the normally ordered expectation value 
of the intensity at the output face of the Raman medium (see Eq. (17)). The 
units of the intensity are such that Ι8(τ, ζ) gives the average number of Stokes 
photons emitted per second through the end face of the pencil-shaped excited 
region into the solid angle A/L

2
 defined by the geometry of the region. We will 

consider only the case where no Stokes wave is externally incident on the 
medium, and so we have, for the initial field, 

< Ε ^ > ( τ ' , 0 ) 4 + )
( τ " , 0 ) > = 0 , (53) 

which means that vacuum fluctuations are not detected with a photodetector. 
Using Eqs. (49) and (50) and the fact that Es, Q\ and F are statistically 
independent, we find 

Ac ft 
h(

T
>

z
) 2nhoosp 2mœR

K2
^

L
^ 

- ιΐ^κ,κ,ζρ^γΐ
2
)} 

exp( - 2Γτ) { / g( [4/q κ2 ζρ(τ)] 1/2 

+ 2Γ dT ' exp [ -2r ( i - τ ' ) ] [ / ^ { 4 κ ^ 2 ζ [ ρ ( τ ) - ρ (τ ' ) ]}
1 / 2

) 

/ Ϊ ( { 4 Χ ικ 2 ζ [ · ρ ( τ ) - ρ ( τ ' ) ] }
1 / 2

) ] (54) 

This is a general expression for the Stokes intensity for arbitrary time, Raman 
gain, and laser pulse shape £ L(T ) . It is applicable when there is no significant 
depletion of the pump or population of the vibrational excited state of the 
molecules forming the Raman medium. The consequences of the formula 
(54) will be studied in some detail in the following, under various limiting 
conditions. 

An important limit of Eq. (54) occurs when the laser intensity is sufficiently 
low for Raman gain to be negligible, and the atoms scatter light independently 
and spontaneously. In this limit, the intensity is 

hi^z) = - ^ - \ K 2 E L ( T ) \
2

Z . (55) 
2nnœsp 2mœR 

This result shows that the intensity of spontaneous Raman scattering grows 
linearly with the amplifier length and follows the laser intensity adiabatically. 
It can be shown that the present treatment exactly reproduces the result for 
spontaneous scattering based on the conventional Kramers-Heisenberg 
treatment [26,28]. The energy flux, hcosIs, is proportional to h. 

The quantum theory presented here allows us to discuss stimulated 
Raman scattering with the help of the same basic formula given in Eq. (54). It 
should be stressed once more that the transition from the spontaneous to 
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the stimulated case is automatically taken into account in this treatment. Two 
regimes of the stimulated Raman scattering will be distinguished: transient, 
and steady-state. In the transient regime, the pump pulse is much shorter than 
the molecular collisional relaxation time whereas, in the steady-state regime, 
the pump pulse is much longer than the relaxation time. 

For times short compared with the molecular collisional relaxation time 
(Γτ -> 0), only the first term in Eq. (54) contributes, giving, for the transient 
Stokes scattering at arbitrary laser intensity, 

Is(x,z) = \gTz{Il\_{2gzx)
1
^ - l\ί(29ζτ)^}, (56) 

where g = 2K1K2\EL\
2
/V. We have assumed here that the pump laser pulse 

has a square shape. This result can be approximated in the high-gain limit 
(gz/Γτ » 1 ) : 

e x p [ 2 ( 2 ^ z r i ) ^ 
/ s ( T

'
z )

 = 8 ^ '
 ( 5 7) 

The dependence of the intensity on the factor 6 χ ρ [ 2 ( 2 # ζ Γ τ )
1 / 2

] is reminiscent 
of the semiclassical result for the transient Raman amplifier [25] . Note that 
the intensities given by Eqs. (56) and (57) do not depend on the molecular 
collisional relaxation rate Γ, since Γ appears only in the product gF, and the 
gain coefficient g is inversely proportional to Γ. 

If the pump pulse is much longer than the collisional relaxation time, one is 
interested in Stokes intensities for times τ much longer than Γ "

1
. In this case, 

the system has reached the steady state. For times long compared to the 
molecular relaxation time (Γτ oo), only the second term in Eq. (54) contri-
butes, with the upper integration limit taken to infinity. It may be shown that, 
for square laser pulses, 

/ s (oo ,z ) = \gYzll0{gzll) - / ^ z / 2 ) ] exp(^z/2). (58) 

In the low-gain limit (gz « 1), this result reduces to the spontaneous scattering 
intensity, \gYz, while in the high-gain limit (gz » 1), it becomes 

Γ 
/ s(oo , z ) ^ — -ïjjexpigz). (59) 

2(ngz)
llz 

This result verifies that g is identified as the steady-state gain coefficient. The 
dependence on the factor (ngz)~

1/2
 is reminiscent of the semiclassical result for 

the steady-state Raman amplifier, in the case of a broad-band pump [30]. 
In Fig. 2, the steady-state Stokes intensity / s( °°>

z
) given by Eq. (58), is 

plotted as a function of gz, the number of gain lengths in the medium. The 
transition from spontaneous (linear) growth to stimulated (exponential-like) 
growth is clearly demonstrated. This result is compared with the standard 
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- 2 0 2 

log ( gz ) 

Fig. 2. Steady-state Stokes intensity as a function of gain gz. Curve (a) is the quantum-field 

result given by Eq. (58), while curve (b) is the pho ton rate-equation result, | [ exp(#z ) — 1]. The 

curves show the transition from linear, spontaneous growth to exponential, stimulated growth. 

(From [28]). 

predictions of phenomenological photon-rate equations, in which Stokes 
photons, produced by spontaneous Raman scattering, act as a source for 
exponential-type stimulated buildup, cf. [6 ,26] . 

In Fig. 3, we have plotted the time-dependent Stokes intensity IS(T,Z), 

evaluated by numerical integration of Eq. (54), for a number of different values 
of gz. It is seen that for small gain (gz = 0.1, 0.01) the Stokes intensity is a 
constant, given by the spontaneous scattering result Eq. (55). For larger values 
of gz, a rapid growth of the intensity is seen at times of the order of Γ

1
, the 

molecular collisional relaxation time. At longer times (Γτ > gz), a steady-state 
value is eventually attained, given by Eq. (58). 

3.4. Power Spectrum of the Stokes Field in the Steady State 

The power spectrum of Raman scattering is an important physical quantity, 
which depends strongly on the quantum-statistical nature of the generated 
radiation. It has a meaning in the steady state only. The power spectrum S(v) 
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l og (Γτ) 

Fig. 3. Ins tantaneous Stokes intensity as a function of time after a constant laser intensity is 

turned on, for a number of different values of gain gz. Solid curves are obtained by numerical 

evaluation of Eq. (54). Broken curves are analytic approximat ions given by Eq. (56) for small times 

and Eq. (58) for long times. (From [28]). 

will be defined as in Section 2, Eq. (18). The symbol ν will be the difference 
between the measured frequency (rad/sec) and the central frequency œs of the 
Stokes wave. 

We will use Eq. (51), which gives the Stokes field, to calculate the spectrum at 
the output face of the Raman generator. The fields should be taken in the 
steady-steady limit; hence, we may use the conditions Γτ » 1, Γ(τ + s) » 1. In 
this case, only the term proportional to F\x\z') in the expression for 
£ S

_ )
( T , Z ) contributes to the spectrum 5(v), since we are assuming that no 

Stokes radiation is externally incident on the gain medium at ζ = 0. Using 
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Eq. (51), the Stokes spectrum is found to be 

- 1 (60) 

This expression will be used to evaluate the Stokes spectrum in several limiting 
cases. The spontaneous, or low-gain, limit occurs when gz « 1. In this case, 

which shows that spontaneous Raman scattering has a spectral width given by 
the Raman line width Γ. 

When the gain becomes high (gz » 1), gain narrowing distorts the 
Lorentzian line shape by amplifying the center part of the Stokes line more 
strongly than the line wings. Then, the spectrum becomes spproximately 

This formula gives a gaussian shape of the power spectrum with width 
proportional to T/(gz)

l/2
. This is a manifestation of the effect known in non-

linear optics as gain narrowing—the larger the gain, the narrower the spec-
trum becomes. The result (62) is similar to that found in the semiclassical 
treatment of a Raman amplifier with a broad-band input Stokes wave [30]. 

The flux power spectrum of the Stokes radiation can also be evaluated. The 
calculation is straightforward, and leads to the result that the flux power 
spectrum for the Stokes radiation is connected with the optical spectrum as in 
Eq. (29), the same equation that gives the relation between the two spectra in 
the case of thermal light. 

3.5. Temporal Coherence 

Another quantity that characterizes the stimulated Raman process is the 
temporal coherence of the Stokes field. This can be understood by a procedure 
that is formally analogous to the one used in classical coherence theory, cf. 

A field is said to be coherent in the second order if the two-point correlation 
function can be factored: < £ ( _ )( τ + S , Z ) £

( + )
( T , Z ) > = f(x + s)f*(x), for some 

function f(t). The Stokes field is usually not coherent in this sense. 
Nevertheless, the preceding factorization suggests the use of an eigenfunction 
representation of the two-point correlation function. 

The two-point correlation function (E
i

s~
)
(z + s , Z ) E

{

S

+ )
( T ,Z ) > can be 

treated as an integral kernel, and its eigenvalues ÀK and eigenfunctions 

S(v) = -rgz 
Γ/π 

(61) 

S(v) = Ι5(π,ζ)19ζ/(πΓ
2
)-]εχρΙ-9ζ(ν/Γ)

2
1 (62) 

[31,32]. 
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%(τ) (k = 1,2,...) can be found by solving the eigenvalue equation 

00 
Ac 

ds(E
{

s-\x + s, ζ)£Πτ,ζ)>Ψ,(τ + s) = λ,%(τ). 2πηω< 
(63) 

The eigenfunctions ΨΛ(τ) will be called temporally coherent modes. They are 
orthonormal, and form a convenient basis for the expansion of the two-point 
correlation function: 

Thus, if one eigenvalue, say λί9 is significantly larger than all the others, the 
Stokes field is nearly coherent, since the two-point correlation function can be 
approximately factored. If, however, more than one eigenvalue is essential in 
the decomposition (64), the correlation function cannot be factored and the 
field is partially coherent. 

The Stokes field at the output of the amplifier can also be expanded into 
coherent modes: 

where the bk are the corresponding annihilation operators. It can be shown 
that since the 4^(τ) are orthogonal and normalized, the operators bk and their 
Hermitian conjugates satisfy the usual commutation relations. Thus, the 
operators bk have the property of annihilating photons in modes characterized 
by temporal eigenfunctions %(τ). The operators bk can be therefore treated 
as independent variables describing the Stokes field at the output of the am-
plifier. Hence, the formula (65) provides a change of independent variables 
from β(Ο,ζ), £ 5(τ,0), F (T ,Z ) , to bk. 

The usefulness of this variable change is that it reduces the number of 
"essential" variables. While F ( T ' , Z ' ) represents an infinite number of random 
variables that contribute to F S ( T , Z), typically only a few lowest temporally 
coherent modes Ψλ(τ) are significantly excited. Thus, after the two-point 
correlation function is found, one can give a simpler description of the field 
with the help of the coherent modes. 

The formula (64) allows for an interpretation of the eigenvalues Xk. They are 
equal to the mean number of photons in the corresponding coherent mode. 
Thus, if only one eigenvalue dominates in the decomposition (64), then pho-
tons are emitted primarily into one coherent mode. In this sense, only one 
coherent mode is excited. If, on the other hand, many eigenvalues lk in Eq. (64) 

Ac 

(E{f\z + 5, ζ)4 + )(τ,ζ)> = Σ ;*Ψ*(τ)ΨΪ(τ + 5). 

2nhœs 

(64) 
k 

(65) 
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are comparable, this means that photons are emitted into many coherent 
modes. In this way, the field coherence is linked to the number of excited 
modes. 

Some of the eigenvalues lk have been found by numerically solving the 
eigenvalue problem Eq. (63) for different values of TxL and gL [31]. The laser 
pulse was assumed to be Gaussian in time with full width at half maximum 
equal to T l . We found that when the ratio TxJgL is less than unity, a single 
temporal mode is dominantly excited, i.e., λί is much larger than all the other 
kk. This means that the Stokes light emitted during the laser pulse is tem-
porally coherent. This corresponds to the transient regime of SRS. On the 
other hand, when YxJgL is greater than unity, the number of temporal modes 
significantly excited, i.e., with comparable eigenvalues, scales as YxJgL. In 
this case, partial temporal coherence exists during the Stokes pulse. 

The temporal coherence properties of Stokes pulses play a crucial role in 
determining the degree of their macroscopic fluctuations. 

3.6. Fluctuations of the Stokes Field 

In Section 3.3, we found the average value of Stokes intensity. Although a 
fully quantum formalism was used, the final expressions have a clear inter-
pretation in semiclassical terms. It is only during the initiation of the Stokes 
wave that quantum theory is truly needed to give a correct interpretation 
of the spontaneous emission. Subsequent amplification can be described 
in terms of semiclassical fields. Quantum theory, however, is necessary to 
interpret the appearance of large scale, pulse-to-pulse fluctuations of the 
Stokes field. We will find now the statistical distributions of various quantities 
describing the Stokes field, and interpret them in terms of large-scale quantum 
fluctuations. 

The definitions of probability distributions in quantum theory can be given 
in analogy to similar problems in classical statistical mechanics. If χ denotes a 
classical random variable and < > denotes the statistical ensemble average, 
the probability density p(y) for the variable χ to have value y is given by [32] 

The standard method of calculating the average value of the Dirac delta 
function of a random variable χ is to apply its Fourier representation 

P(y) = <<5(y - *)>· (66) 

(67) 

which shows that the probability distribution function is given by a Fourier 
transform of the characteristic function <exp( — ίχζ)}. 
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A similar definition will be applied to the quantum-mechanical system 
consisting of the Raman medium and the quantized electromagnetic field. The 
characteristics of the Stokes radiation may vary from pulse to pulse as a result 
of the random quantum initiation process. Such quantum fluctuations of 
some of the quantities characterizing the Stokes pulse were measured, and will 
be discussed now. We will first discuss the fluctuations of the Stokes pulse 
energy. 

The pulse energy is the integral over time of the intensity; the corresponding 
quantum-mechanical operator W is written as 

w =
 Ac 

2nho)s j 

= I ^ V (68) 
k 

We have made use of the temporally coherent mode decomposition of the 
Stokes field; see Eq. (65). The probability density function for the pulse energy 
P(W) is given by the Fourier transform of the characteristic function: 

00 

P ( W) =
 l h i \

 d
t™P(-itW)Ctt), (69) 

- 00 

where the characteristic function is 

C (0 = <:exp(*W):>. ( 70 ) 

An approximation has been made, namely that the flux is large. In other 
words, we will be interested in the fluctuations of macroscopic quantities, 
rather than those in the low-intensity limit. It is interesting that even in the 
high-intensity limit, the quantum fluctuations remain large. The approxima-
tion consisted in using a normally ordered operator product in Eq. (70) . This 
operator ordering introduces errors of the order of one photon. But, since the 
total number of photons is large, this error is small. Further discussion of this 
point can be found in [13]. 

The evaluation of the characteristic function in Eq. ( 7 0 ) is straightforward, 
since we know (see Eq. (51)) the operators F S( T , Z) and their action on the ini-
tial state. The calculation can be simplified even further by noticing that the 
quantum expectation value of a normally ordered quantity can be represented 
by a classical average over a set of independent, complex, random variables 
[22]. Although one may use Q(0 ,z), ES(T,0\ and F ( T , Z ) as the independent 
variables, the most natural choice of independent variables is provided by 
the coherent modes. In this case, the operators bk are replaced by classical 
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random quantities ßk, which are Gaussian distributed with zero mean and 
variance given by < | f t |

2
> = Ak. The characteristic function ϋ(ξ) can then be 

evaluated as an integral over a multivariable gaussian distribution and the 
probability distribution is found to be [31] 

P(W)= lim Σ C[
K)
exp(-Wßk) 

K^ao /c= 1 

where 

κ 

Π 
l(*k) 

( 7 1 ) 

( 7 2 ) 

This result shows that the probability distribution for the Stokes energy (total 
number of Stokes photons) has a form that is a sum of negative expo-
nentials. The weights and the widths are given by Àk, the eigenvalues of the 
two-time correlation function (see Eq. (63)). In this way, the coherence prop-
erties of the Stokes radiation determine the shape of the probability distri-
bution for the Stokes pulse energy. This result shows an interesting relation 
between a classical concept of light coherence and a purely quantum feature 
of radiation—pulse-to-pulse distribution of the energy emitted. 

Figure 4 shows examples of the probability density function P(W) for dif-
ferent values of T T l and gL, both calculated and measured [33]. The behav-
ior of P(W) is in agreement with simple ideas of statistics. When R T L/ g L i s 

Fig. 4. Experimental and theoretical Stokes pulse-energy distributions. The experimental 
p a r m e t e r s a r e : ( i ) r t L = 1 9 a n d 0 z = 15;(ϋ)Γτ^ = 49 and gz = 17;(iii) T T l = 8 5 a n d # z = 9.4. The 
theoretical plots were calculated using a Gaussian-shaped p u m p intensity and best fit parameters: 
(i) T T l = 18.9 and gz = 25.1; (ii) T T l - 48.7 and gz = 28.8; (iii) T T l = 85.2 and gz = 15.8. (From 
[33]). 
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small ( < 1), a single temporal mode is dominant in the Stokes emission (i.e., 
only one of the kk is large) and P(W) is nearly a negative exponential. In the 
opposite case, when YxJgL is large ( » 1), many temporal modes are excited. 
In this case, the Stokes emission is temporally incoherent in the sense that 
many modes are excited. The distribution P(W) is seen in Fig. 4 to become 
peaked near the mean value, and to narrow as TxJgL increases. 

This behavior of the energy fluctuations can be understood in the following 

way. Let be the number of photons emitted in the ith temporal mode. Then, 

the detected photon number, or the pulse energy, is the sum of the numbers in 

each mode-

rt = nl + n2 + n3 + · · · . (73) 

In the limit of many modes, the well-known central limit theorem states that 
P(W) will be a Gaussian distribution centered at W = (W). The width 
divided by the mean decreases as the square root of the number of modes 
excited. The departures from the negative exponential seen in Fig. 4 are 
indications of the tendency of P(W) to become Gaussian when many modes 
are excited. 

Physically, one may view each coherence time as an independent chance for 
the molecules to emit a spontaneous photon, which would be amplified to the 
macroscopic level. In a pure single-mode case, it would be most likely that the 
atoms do not emit a photon (negative-exponential distribution). As more 
modes are added, it becomes less likely that all modes will fail to emit a photon 
(departure from exponential). 

Several experiments have been carried out to measure the pulse-energy 
fluctuations [ 3 3 - 3 6 ] , the earliest being by Walmsley and Raymer [12] and 
Fabricius et al. [37] . The idea of such measurements is a straightforward 
one: An ensemble of Ν Stokes pulses is generated by identical pump pulses, 
and the number of times that the Stokes pulse has an energy within AW of 
W is determined. As an example, Fig. 4 shows histograms of such measure-
ments, showing the transition from transient to steady state [33]. Narrowing 
of the distribution when the parameter TxL/gz (giving roughly the number 
of excited temporal modes) increases is clearly seen. 

3.7. Temporal Fluctuations 

Other quantities exhibit macroscopic fluctuations as well. The present 
results imply pulse-to-pulse fluctuations of the temporal pulse shapes. This 
can be seen by replacing, as before, the operators bk by classical random 
independent quantities ßk, which are Gaussian distributed with variance given 
by <IAJ

2
> = kk. For each pulse, the temporal modes %(x) are excited with a 

different set of random amplitudes ßk. 
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This leads to a different and unpredictable pulse shape | £ S ( T , Z ) |
2
 for each 

pulse. 
Using the mode functions %(τ) and a random number generator to produce 

the ft, some typical Stokes pulses have been constructed, and are presented 
in Fig. 5 [38]. The types of pulses depend on the eignvalues Xk. These eigen-
values in turn depend on the value of the parameters T T l and gz. For small 
Txjgz, a single eigenvalue λχ is dominant, so most of the pulses are structure-
less. As Yxjgz increases, higher order eigenvalues become larger, implying 
more structure on the resulting pulses. 

Raymer et al. [38] observed random pulse-to-pulse variation of Stokes 
pulse shapes. Examples of such pulses, measured with a steak camera, are 
shown in Fig. 6. While single-peaked shapes were most common, pulses with 
more complicated structure, corresponding to many excited coherent modes, 

Time (ns) 

Fig. 5. Theoretical realizations of the random Stokes-pulse intensity. The parameters are: 
T t l = 80, t l = 5 ns, gz = 30 cm, ζ = 50 cm. The single-peaked pulse shown in (a) is the most 
common, with the probability of observing pulses with multiple peaks decreasing as the number 
of peaks increases. (From [38]). 
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0 1 2 0 1 2 
Time (ns) 

Fig. 6. Examples of the r andom Stokes pulse shapes observed from a Raman generator. The 

plots have all been scaled arbitrarily to best illustrate the pulse shapes. The experimental 

parameters for all the plots are: T t l — 80, t l = 4.8 ns, gz = 32.6, ζ = 100 cm. These experimental 

shapes should be compared with the pulse shapes predicted using the coherent modes theory, 

shown in Fig. 5. They were selected from a similar-size statistical sample, and are arranged to show 

the similarity. (From [ 3 8 ] ) . 

were also seen. These experimentally determined shapes are selected from a 
statistical sample of size similar to that from which the typical theoretical 
shapes in Fig. 5 were chosen. The pulses are arranged in the figure to facilitate 
comparison with Fig. 5. 

A closely related quantity exhibiting large pulse-to-pulse fluctuations is the 
pulse-energy spectrum, studied by MacPherson et al [39]. 

Summarizing, it has been found that microscopic quantum fluctuations 
associated with spontaneous Raman scattering can give rise to large fluctua-
tions in the total energy and temporal evolution of generated Stokes pulses. 
This occurs for pulses containing macroscopic amounts (say, \μ], or 10

1 3 

photons) of energy. The fluctuations are in great excess of the shot-noise limit. 
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4. Q U A N T U M F L U C T U A T I O N S IN O P T I C A L 
P A R A M E T R I C A M P L I F I C A T I O N 

In this section, another class of nonlinear optical effect will be discussed, 
optical parametric amplification (ΟΡΑ), which arises from three-wave mixing 
in a nonlinear optical medium. As opposed to the Raman case, the medium 
is a crystal, which allows for phase matching of the interacting waves. This 
plays an important role in ΟΡΑ. 

One of the waves is the pump (laser) field with high intensity that again will 
be treated as a given classical field E2, with a central frequency ω2. The two 
other waves, called idler and signal, are weak and have central frequencies ω, 
and cos, where ω, + œs = ω2. This condition relates central frequencies of the 
fields; however, all the waves may have finite bandwidths. The pump pulse is 
assumed to be transform-limited, so its bandwidth is determined by the pulse 
duration. The idler and signal waves are dynamical quantities; their band-
widths are determined by the interaction. The bandwidths of idler and signal 
waves are determined primarily by the range of frequencies over which the 
phase matching can be achieved. 

There are many similarities between parametric amplification and SRS. 
Both processes are three-wave interations; in the Raman case, one of the 
waves is the material polarization wave, in O P A all three waves are electro-
magnetic. In both cases, the weak fields are spontaneously generated from 
the quantum noise level and are amplified to a macroscopic level during single-
pass propagation through the medium. The broad spectrum of the vaccum 
noise is in both cases filtered by the amplification process. An essential differ-
ence between SRS and ΟΡΑ is that SRS is a phase-insensitive amplification 
process, while O P E is a phase-sensitive amplification process [40]. 

4.1 . Optical Parametric Amplification 

Interaction of the medium with the electromagnetic field in the ΟΡΑ case 
will be discussed based on a Hamiltonian describing the crystal interacting 
with the three waves. ΟΡΑ can be most easily achieved in crystals without a 
center of symmetry; our discussion will be restricted to such crystals. 

The energy of the electron in the presence of the field is given by the 
standard anharmonic model for a non-centrosymmetric crystal [ 4 1 -4 3 ] : 

He + Hint = p
2
/2m + \mœ

2

0x
2
 + ^ηιξχ

3
 - exE. (74) 

The interaction energy is of the standard dipole form; the electric field vector Ε 
is comprised of all the three waves. The resonance frequency of the electronic 
oscillations ω 0 is different from the driving field frequencies. From this 
Hamiltonian, the equation of motion for the electron coordinate (either 
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classical or quantum mechanical in the Heisenberg picture) is 

3c = -ω
2

0χ - ξχ
2
 + (e/m)E. (75) 

We will treat the case that the signal and idler waves are degenerate in center 
frequency and polarization. The center frequency of both waves is denoted ωι 

and the center pump frequency is ω 2 . Introducing the slowly varying compo-
nents of the fields Ε and of the electronic coordinates, 

E
 = Σ E\

 + )
e'

i{œit
-

kiZ)
 + h.c , (76) 

i = 1 

χ=Σ x<
 + )

éT
i ( e ,

'
f
-*>

z )
 + h .c , (77) 

and assuming phase matching at the carrier frequencies, k2 = 2/c l5 the follow-
ing equations for the and x2 components are derived: 

x[
+)
 = - / Δ 1 χ

(

1

+ )
 - ίζ1χ[~

)
χ

{

2

+) + I'MV^, (
7 8 a

) 

x
{

2

+)
 = -iA2x[

+)
 - ίξ2χ[

+)2
 + ίκ2Ε2

+
\ (78b) 

where Af = ω 0 — œt are the detunings, assumed large compared to the band-
widths of the fields, and ξ ί = ξ/2ω Ι and Kt = e/lœ^. 

In the slowly-varying-envelope approximation, the equations for the field 
amplitudes of the signal and pump are found from the wave equation (16) in 
Section 2: 

c l + l)E[^ = i2neWlx[
+
\ (79a) 

CZ Ct 

d d \ 
c— + — )E2

+)
 = ΐ2πβω2χ

{

2

+
\ (79b) 

dz dt J 

Equations (78) and (79) need to be solved self-consistently. The fields are 
weak enough so that they do not cause saturation, and therefore a per-
turbative approach is useful. For broad-band fields, this is easier to carry out 
in the frequency domain. Fourier transforming the equation for x[

+)
 and 

solving to second order in the fields, we find 

x x ( v , z ) = 
Ai - ν 

j-< / \ * xdv' Ë\(-v\z) Ë2(v-v\z) 

2π Αί-ν' Δ 2 - ( ν - ν ' ) 
(80) 

The frequency argument ν is not the optical frequency, but the difference 
between the actual frequency and the central frequency ω1 or ω2. The unit of ν 
is radian/second. Fourier transforming Eq. (79a) and substituting Eq. (80), we 
find the equation of motion coupling the spectral components of El at ω1 -h ν 
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and ωί — ν' with the components of E2 at 2ω χ + ν — ν': 

~ ^ ~ 

c- ίν Εί(ν,ζ) = 2πΐω1Ρ1(ν,ζ)9 (81) 

CZ J 
where the polarization is 

Λ(ν,ζ) = ζ^ΜΕ^ν,ζ) + i - fdv'2 ( 2 )(v, v ' )£î(-v' ,z)£ 2(v - ν', z), (82) 
2π J 

and the susceptibilities are given by 

yu>(v) = e Kl , 

(83) 

7<*>(v ν') = ~ ^ ' Κ ι Κ2 

* y' ' (A t - vKAi - ν ' )(Δ 2 - ν') 

The first term in P x is the linear dispersion for the signal wave, and is related to 
the wave vector by 

k(œx + ν) = ^L±lll + 2πχ ( 1 )(ν) ] . 
c 

The second term is nonlinear in the electric fields; it gives the coupling between 
the polarization and the product of two fields. 

In the case of a real crystal, the frequency dependence of the susceptibility is 
not well-represented by Eq. (83). However, one may generalize the preceding 
treatment to allow for arbitrary dependence of the susceptibility on the fre-
quency by summing over different values of 

In real crystals, the dependence of the wavevector k on the frequency is 
rather weak. Accordingly, the wavevector k(œY + ν) will be expanded in 
powers of the difference frequency ν up to second order: 

k(œx + ν) = k(œx) + vW + \v
2
k'\ (85) 

where 

K d ( ° L (86) 

The derivative k' is equal to the inverse of the group velocity near the central 
frequency ω 1 ? while the second derivative k" is related to the group-velocity 
dispersion (GVD) near this frequency. This approximation takes into account 
all the relevant physical processes, and simplifies the analysis. 
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The relation between the phase mismatch Ak for the parametric process and 
the group-velocity dispersion is 

Ak(v) = k2 — kl(œ1 + v) — kl(œ1 — ν) 

S -k"v
2
. (87) 

Using this expansion, the equation for the signal field becomes 

+ 1v

2^Je1(V,Z) = ^dv'f
2
\v9v')Ë\{-v'9z)Ë2{v - ν', ζ). 

(88) 

This equation forms the basis for the formal analysis of the ΟΡΑ. A similar 
equation was found earlier by heuristic arguments [44]. As opposed to the 
Raman case, this equation does not involve polarization of the medium. This 
is because the ΟΡΑ is an off-resonance process, and the medium polarization 
has been eliminated with the help of the adiabatic approximation. However, 
this equation provides an interesting coupling between the positive- and the 
negative-frequency parts of the field. This kind of coupling is the source of a 
large variety of phenomena, both in the classical and quantum descriptions. 

Next, the equations for the electric field will be solved. An approximation 
will be used; namely, it will be assumed that the pump field is monochromatic 
and unchanged by its interaction in the crystal. Although this approximation 
neglects possible effects due to quantum fluctuations of the pump [44] , it does 
not introduce large errors for intense pulses that are long compared to the 
inverse phase-matching bandwidth, typically 1 0

1 3
- 1 0

1 4
 rad/s . The frequency 

range over which the weak field can be amplified is determined mainly by the 
phase-matching condition rather than by the bandwidth of the pump field. 
Thus, the equation becomes [45,46] 

_ i(^k' + j v V j j f i ^ z ) = ί ^ χ
( 2 )

( ν , v ) Ë \ ( - v 9 z ) E 2 . (89) 

The symbol E2 now denotes the electric field strength of the pump, as opposed 
to the spectral component that appeared in Eq. (88). To solve the problem, we 
have to specify the equation of motion for the quantity Ë\( — v9Z): 

è
 + I

' ( "
v / c

'
+

^
v

) ^ ( -
v

^ ) = -
i

v
? ( 2 ) (

"
v

' "
v ) Ê i ( v

'
z ) Ê 2

-
 ( 9 0) 

The susceptibility χ
( 2 )

(ν , ν) will be approximated by a frequency-independent 
quantity, and a gain constant will be defined as y = (ω1/ο)χ

(2)
Ε2. The solution 

of this set of two ordinary linear differential equations is 

£ x(v,z) = exp(i/c'vz)[/(v,z)£ 1(v,0) + ig(v9z)Ë\(-v90)l (91a) 

£ l ( -v , z ) = exp ( i f c ' vz ) [ / * ( -v , z )£ Î ( -v ,0 ) - ί ^ - ν , ζ ^ ν , Ο ) ] , (91b) 



218 J. Mostowski and M. G. Raymer 

where the functions / and g are defined as 

/ (v , z) = cosh(sz) + i(k"v
2
/2s) sinh(sz), (92a) 

g(v, z) = (y/s) sinh(sz), (92b) 

where 

5 = V7

2 - (i/c"v2)2. (92c) 

Note that ^(v, z) is real, even for imaginary s. These functions obey the property 

\f(v,z)\
2
-\g(v,z)\

2
 = l, (93) 

which means that Eq. (91b) is a Bogoliubov (squeezing) transformation 
[47,48]. A similar solution, which is a multimode generalization of the so-
called two-mode squeezed states [40], was obtained for the case of the Kerr 
effect in an optical fiber [49]. 

The fields in the time domain can now be reconstructed by taking the 
inverse Fourier transform, which will give temporal convolution of the input 
field operators at ζ = 0 with the inverse transforms of the / and g functions. 
We will not reproduce these formulas here, and restrict ourselves to the 
discussion in the frequency domain. 

4.2. Spectrum and Photon Flux of Ο Ρ Α 

The spectral density S(v) of the parametrically amplified signal field El is 
given by the Fourier transform of the two-time field correlation function. For 
a stationary process, the spectrum is related to the two-frequency correlation 
function by Eq. (21) with ω, = ω ΐ 9 where the expectation value is calculated in 
the state of the input signal field, which may be the vacuum |0 > for parametric 
generation or an arbitrary state for an amplifier. For the generator case, this 
becomes 

<0 |£ î (v , z )£ 1(v ' , z ) | 0> = |^(v, z)|
 2
< 0 | £ 1( v , 0 )£ Î (v ' , 0)|0>. (94) 

The expectation value of the input field that appears on the right-hand side 
is anti-normally ordered, and is different from zero in the vacuum state. 
Normally ordered terms give zero, and are not written. The relation between 
normally ordered fields at the output to anti-normally ordered fields at the 
input is characteristic of ΟΡΑ. The ant i -normal-ordered expectation in the 
vacuum state is equal to the commutator, given in Eq. (15b): 

<0|Ê 1(v,0)£Î(v',0)|0> = 2π(^ρ^δ(ν - ν'), (95) 

where A is, as before, the pump-beam transverse area. Thus, the optical 
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spectrum of El is 

S(v) = (l/2n)\g(v,z)\
2
. (96) 

The total photon flux (photons per second) is given by the integral of the 
spectrum over frequency, Eq. (20): 

00 

< / > = έ \\s(v,z)\2dv. (97) 
- o o 

The spectrum and the flux will be discussed in the low-gain and high-gain 
limits. In the low-gain limit (γζ « 1), the spectrum is proportional to 

\g(v,z)\
2 s (yZ)

2(S i ll (^'2

V

z

2 z ))2
 (low gain). (98) 

The characteristic width of the spectrum is (in radians/second) 

w = J2n/k"z. (99) 

This is the spontaneous phase-matching line width, and is determined by the 
group-velocity dispersion and the crystal length. Figure 7 shows the optical 
spectrum for several values of gain, plotted against frequency normalized by 
the width w. A typical value for k" in a crystal is 1 0 ~ 2 5 sec 2/m. So for ζ = 1 cm 
the spectral width is typically 1 0 1 3- 1 0 1 4 rad/sec. The flux in the low-gain limit 
is found to be 

</> £ (2/3π)(7ζ)2νν (low gain). (100) 

Normalized Frequency, v /w 

Fig. 7. Optical spectrum of Ο Ρ Α from Eq. (96) for several values of gain, for y ζ = 0.1 (solid 
curve), 3 (long dashed curve), and 10 (short dashed curve), plotted against frequency normalized by 
the width w given in Eq. (99). 
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The high-gain limit is reached when y ζ » 1. In this case, the spectrum is 
proportional to 

\g(v,z)\2 * i e x p ( 2 y z ) e x p [ - ( v / 5 )
4
] (high gain), (101) 

where the width is now 

b = lyz/π2] 1 / 4w - [4y / ( / c" ) 2 z ] 1 / 4 (102) 

The dependence of the high-gain spectrum on the frequency resembles to some 
extent the corresponding result for the Raman case, Eq. (62). However, we get a 
v

4
 dependence in the exponent rather than v

2
. For fixed w, increasing the gain 

coefficient y leads to broadening of the spectrum, in contrast to the case in SRS 
where narrowing occurs. This broadening occurs because in high gain the 
phase matching is enforced only within a gain length y ~

l
. 

The flux of the signal in the high-gain limit can be calculated by integrating 
the spectrum over frequencies. We find (using the gamma function) 

</> Ξ 0.9(ft/47ü)exp(2yz). (103) 

Note that the flux grows slightly slower than exponentially in ζ due to the 
dependence of b on z

1 / 4
. This is similar to the ζ

1 /2
 factor appearing in SRS 

(Eq. (59)). In both cases, these factors arise from the dependence of the band-
width on the medium length. 

4.3. Ο Ρ Α Intensity Fluctuations 

It is of interest to obtain the power spectrum of the photon flux (intensity) 
noise in the case of steady-state, degenerate down conversion. The pulsed case 
is more complicated and has been studied in Ref. 50. Related measurements 
have been reported in Ref. 51. 

For this, we must calculate the flux correlation function. Because the field in 
this case does not obey the Gaussian moment theorem, we cannot use Eq. (29). 
Instead, insert the Fourier representation of E

i + )
 and E

{
~

)
 into Eq. (25). Then 

a four-frequency correlation function must be evaluated. This is done by using 
the connection of the output fields to the input free fields (Eq. (91)) and taking 
the input state to be the vacuum; then, we find 

(fr(va,z)ËHvb,z)Ë(vc,z)Ë(vd,z)) 

= A n 2 i ~ ~ J ^ j exp[-ifc 'z(v e + vb - vc - vd)]g(va)g(vd) 

x {f*(vb)f(vc)S(va + vb)ö(vc + vd) 

+ g(vb)g(vc)LÔ(va - vd)ô(vb - vc) + δ(να - vc)ô(vb - v d)]}. (104) 
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Using this function and evaluating the necessary integrals with help of the 
delta functions gives the result for the power spectrum of the photon flux 
noise: 

00 

Γ dv' 

P(v) = </>+ I _ [ | 0 ( v ' , z ) |
2
| 0 ( v - v ' , z ) |

2 

- o o 

+ g*(v\z)f*(v'9 z)g(v - v', z)f(v - v', z)], (105) 

where the average flux is given by Eq. (97). This spectrum is real and positive, 
and is plotted in Fig. 8 for various values of gain. 

In the limit of single-mode, degenerate down conversion, as would be 
present in a cavity, Eq. (105) reduces to the expression derived in Ref. 48. In this 
case, one considers the variance of the photon number, given by 

An
2
 = <n> + <:Δπ

2
:> , (106) 

where <n> = g
2
 is the shot noise, and the wave noise is given by the normally 

ordered variance 

<.:An
2
:y=g

4
 + g

2
\f\

2
. (107) 

This implies that the photon number variance for a parametric amplifier is 
twice that for a single-mode thermal field (Bose-Einstein): 

An
2
 = 2<n>«n> + 1) = 2 A n t

2

h e r m a l. (108) 

Normalized Frequency, v/w 

Fig. 8. Power spectrum of the Ο Ρ Α photon flux noise, from Eq. (105), for y ζ = 0.1 (solid 

curve), and 2 (dashed curve). 
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4.4. Noise Reduction and Squeezing 

In spite of the fact that the photon flux in parametric down conversion 
exhibits very large fluctuations (even larger than thermal), some other mea-
surable quantities have greatly reduced noise. This noise reduction can go 
not only below the thermal level, but also below the standard shot-noise level. 
This possibility arises from the correlations between the fluctuations at 
different frequencies, not present in thermal nor in coherent light, and makes 
parametric amplification a paradigm for a newly understood class of processes 
referred to as two-photon quantum optics [40]. The correlations at different 
frequencies result from the simultaneous creation of pairs of photons at 
frequencies symmetrically displaced from one half of the pump frequency. 

The states of the field generated by the parametric amplifier are a special 
class of states that exhibit noise reduction [52], and are usually refered to as 
squeezed states. Alternative methods of generating the squeezed states involve 
four-wave mixing in atomic vapors [10] or optical fibers [53], resonance 
fluorescence by atoms in an optical cavity [54], and, in the microwave region, 
by wave mixing in a Josephson junction [55] . Extensive discussion and 
references are given in Ref. 11. 

It is customary to discuss the quantum fluctuations of the field in terms of 
the creation and annihilation operators a

f
(v, z) and α(ν,ζ), respectively, asso-

ciated with each frequency, which for narrow-band fields are connected to the 
frequency-domain field operators by 

These are defined so that, using the field commutator equation ( 15b), they obey 

In the case that only one mode is excited (as in a cavity), the creation and 
annihilation operators are defined in the usual way [6] , so that [ a , a

f
] = 1. 

This case will be reviewed briefly. (See Ref. 14 for a fuller discussion.) New 
dimensionless quadrature operators, formally analogous to position and mo-
mentum operators, are then defined by 

(109) 

[α(ν,ζ), α
τ
(ν ' ,ζ ) ] = δ(ν — ν'). (110) 

(111) 
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where j? is a reference phase, defined relative to some time origin in the 
problem. This implies that the standard deviations obey the uncertainty 
relation 

AX AY > | . (112) 

The case of a coherent state (which could be the vacuum) is distinguished by 
the property that each quadrature has the same uncertainty, and the product 
equals the minimum possible value: 

AXCoh = AYCoh = I (113) 

The coherent state can be represented, as in Fig. 9a, as a circle of uncertainty 
around the average value <X + * ^ > c o h > which is the coherent-state amplitude. 

The squeezed state is characterized by having unequal quadrature un-
certainties while maintaining the minimum value for the product, i.e., 

AX = \e~\ AY = \e\ (114) 

where s is called the squeezing parameter. The squeezed state is represented by 
the ellipse of uncertainty in Fig. 9b. The squeezed vacuum state is represented 
by an ellipse of uncertainty centered at the origin. The formal operator trans-
formation that produces a squeezed state from a coherent state is reviewed in 
[14]. It is equivalent to the Bogoliubov transformation given for the multi-
mode case in Eq. (91). In terms of X and Y, it is simply 

X^Xs = Xe~\ Y-+Ys=Ye
s
. (115) 

The main point here is that it is fully consistent with quantum mechanics to 
shift the uncertainty from one physical observable to its conjugate variable. It 
was not until recently, however, that this could be experimentally im-
plemented for the electromagnetic field. The resulting field has no classical 
analog. 

The case of multimode, wide-band squeezing is slightly more complicated 
than the one-mode case just discussed because the appropriate quasi-position 

(a) (b) 

Fig. 9. (a) Phase-space representation of a coherent state, a minimum-uncertainty state with 

equal uncertainties in both quadra ture variables, χ and y. (b) A squeezed state, with unequal 

uncertainties. 
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and momentum operators involve creation and annihilation operators at 
more than one frequency [40] : 

X(v,z) =
 X

-[a{v9z)e~
iß
 + a\-v9z)e

iß
\ 

(116) 

Υ(ν,ζ) = l [ f l ( v , z ) é r * - a\-v9z)e
iß
\ 

2ι 

This definition reflects the correlations that exist between the frequencies 
displaced by + ν from the central frequency (ωι in down conversion). Note 
that here X and Y are not Hermitian. To show that these are the proper 
variables to describe squeezing, we reexpress the solutions for down conver-
sion, Eq. (91), using Eq. (109), as 

where 

X(v9z) = fxx(v9z)X(v90) + fxy(v,z)Y{v90)9 

Y(v,z) = fyx(v9z)X(v90) + fyy(v,z)Y(v90)9 

/ „ (v , z ) = ^ R c F _ ( v ) , 

fxy(v9z) = e
ikvz

lmF_(v)9 

fyx(v9z) = ie
ik
'^lmF+(v)9 

fyy(v9z) = ie
ih
'*

z
ReF+(v)9 

(117) 

(118) 

and 

F±(v) = cosh(sz) + (i/s){^k"v
2
 ± ye~

i2ß
) sinh(sz). (119) 

The important point to note about this solution is that for each value of 
frequency v, the squeezing occurs along a different axis in phase space; i.e., a 
different value of β minimizes the noise variance in the X variable. In the high-
gain limit (sz » 1), this value is that which minimizes fxx, and is found to be 
determined by 

s in2ß = s/y9 cos2i8 = \k"v
2
/y. (120) 

Observe that at exact degeneracy (v = 0), maximum squeezing occurs at the 
phase value β = π/4. Then, Eq. (117) becomes 

X(v9z) = e~
yz
X(v90)9 Y(v9z) = e

y z
7(v,0) , (121) 

which is of the same form as the single-mode behavior, Eq. (115). For 
frequencies ν other than zero, dispersion is present and maximum squeezing 
occurs at a phase other than π/4. For frequencies near zero, maximum squeez-
ing occurs at approximately β ^ π/4 — k"v

2
/4y. 
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4.5. Homodyne Detection of Field-Quadrature Noise 

The physical quantities that can display reduced noise are the quadrature 
amplitudes of the electric field. The electric field is not easy to measure directly 
since it oscillates at an optical frequency, too fast to be detected by any 
macroscopic device. It is usually flux or another correlation function of the 
electric field that is measured. The flux of an optical field varies on a much 
slower time scale, and can be measured by means of the photoelectric effect. 

Homodyne detection is used in order to measure indirectly the electric-field 
quadrature amplitudes of light [56] . Homodyning reduces the measurement 
of a rapidly oscillating field to the measurement of slowly varying intensities. 
In the case of optical fields, homodyning is accomplished by adding a strong 
coherent field to the signal field that is to be measured. The coherent field, 
called the local oscillator, is monochromatic; its frequency is equal to the cen-
tral frequency ωγ of the signal field. What is measured is the photon flux of 
the sum field, called the homodyne field, from which the quadrature ampli-
tudes can be deduced. 

The quadrature amplitudes Ec and Es are hermitian operators defined by 

EG(t,z) = E
i +

 %z)e~
ia
 + E

{
~%z)e\ 

(122) 
E,(t,z) = - i [ F

( + )
( i , z ) e -

i a
 - £<->(t,z)e

t e
], 

where ALOe~
i<x
 is the complex amplitude of the coherent state with phase α 

describing the local oscillator field. The amplitude ALO is assumed to be much 
larger than that of the signal field. The electric field of the signal (oscillating at 
optical frequency) is, at ζ = 0, 

E
i+)
(t9z)e~

it0it
 + E

{
-\t,z)e

i(0it
 = Ec(t,z)œs(œlt - α) + £ s( i , z )s inKi - α). 

(123) 

The amplitude Ec is in phase with the local oscillator while the amplitude Es is 

90° out of phase. 
The linear superposition of the two fields is achieved using a beamsplitter 

with complex reflectivity and transmisivity r and i, respectively. The detector 
placed in one of the outputs of the beamsplitter measures the flux of the 
homodyne field 

£< + >(*, z) = rE
i + )

(t,z) + M L Oé T
f a

. (124) 

To lowest order in the signal field, the homodyne flux is 

/«(*) = 2 ^
{ | ί | 2

^ °
 +

 N^Lo[cos(rç)F c - sin(i7)£e]}, (125) 

where the phase η is associated with the beamsplitter, ir* = \tr\e~
in
. Thus, 

fluctuations of the quadrature amplitudes are manifested as noise on the 
homodyne flux. 
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The photon flux equation (125) corresponding to the homodyne field can be 
spectrally analyzed by calculating the Fourier transform of its autocorrelation 
function as in Eq. (22), to give the homodyne noise spectrum PH(v) in terms of 
the homodyne flux correlation function C H( T ) [19,20,57,58]. The correlation 
function, to lowest order in the weak signal field, is found by putting the 
homodyne field (124) into Eq. (25), giving 

cA 
^(τ) = <ΙΗ}δ(τ) + ^^\»\

2
<^ο> 

χ [<£<->(i,z)E
( + )

(t + τ, z)> + <E
{
~\t + τ, ζ )£

( + )
(ί,ζ)> 

+ e~
2iitl + a

\TE
i
-

)
(t9z)E

{
-

)
(t + τ, z)> 

+ β
2ί
<"

 +
 "><7Έ

( + )
(ί + τ, ζ )£

( + )
( ί ,ζ)>], (126) 

where the local oscillator flux is < / L O> = (cA/2nhœ1)Al0 and the homodyne 
flux is approximated as < / H > = <^LO>- Putting this correlation function into 
Eq. (22) gives the general expression for the rf homodyne spectrum. Often, as 
for coherent or thermal light, the signal correlation functions < F

( _ )
F

( _ )
> and 

< £
( + )

F
( + )

> are zero. This is not the case, however, in down conversion, due to 
the correlations between frequency components at ± v. 

For the case of light generated by parametric down conversion, the needed 
correlation functions are found from the solutions in the frequency domain, 
Eq. (91). The rf homodyne spectrum is then found to be 

W = | t | 2</ Lo> + M
2
< / L O > W ( V ) , (127) 

where 

W(v) = 2{[#(v ,z) ]
2
 - | / (v,z) |^(v,z)sin[2a + 2η + 0(v)]} (128) 

where φ(ν) is the phase of / (v , z), given in Eq. (92), and depends on frequency. A 
similar result was obtained for the case of the Kerr effect in an optical fiber 
[59,60] as well as ΟΡΑ as treated here [45,46] . The first term in PH(v) is the 
shot noise associated with the local oscillator transmitted by the beamsplitter 
and incident on the detector. It is white noise, that is, constant for all rf 
frequencies. The second term is the change of the noise due to the interference 
with the parametric signal. The quantity W(y) has a lower bound of — 1 and no 
upper bound. The lower bound is approached when the parametric down-
conversion gain is large and the phase is adjusted to satisfy 2α + 2η + 
φ = π/2. 

It can be seen that the homodyne flux is the quantity that can have noise 
either greater or less than the standard shot-noise limit at rf frequency v. 
By adjusting the parameters, one may produce a light field with essentially 
no fluctuations in the photon flux. The beamsplitter reflectivity should be 
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nearly unity. The local oscillator should be strong enough so that even after 
attenuation by the beamsplitter it dominates the parametric signal at the 
detector. Also, the phase at this frequency must be adjusted to π/2. In practice, 
the value of η is usually varied by slight movement of the beamsplitter. If, for 
some choice of phase, the homodyne field has noise less than the standard 
shot-noise level, the down-conversion field is said to be squeezed. 

In the high-gain limit (sz » 1), the phase of | / (v ,z) | is given by 

cos[>/2 - φ(ν,ζ)] = sin[(/>(v,z)] s i/c"v
2
/y, (129) 

which means that the value of 2α + 2η that gives the greatest noise reduction 
satisfies 

cos[2a + 2rç] = \k"v
2
/y. (130) 

Comparing this with Eq. (120) shows that we can identify the reference phase 
denoted by β in Section 4.4 as being equal to β = a. + 77, that is, the phase of the 
local oscillator modified by the beamsplitter. Equation (130) shows that each 
rf frequency requires a different local-oscillator phase to maximize the noise 
reduction at that frequency. 

The homodyne spectrum. Eq. (127), is plotted versus frequency in Fig. 10 for 
2a + 2rç = π/2, which maximizes the noise reduction at ν = 0. For this choice 
of phase, W(v) can be approximated in the high-gain limit as 

W(v)^ - 1 + 2 { 1 -cos[( />(v,z)]} | / (v ,z) |
2
. (131) 

The noise-reduction bandwidth can be defined as that rf frequency v N R at 
which W(v) = —1/2. This is, in the high-gain limit, 

vtn = (2^27/k")l,2e-"'2. (132) 

For large gain, the noise-reduction bandwidth is smaller than the down-
conversion optical bandwidth b in Eq. (102). For example, for y ζ = 5 and 
typical crystal parameters given in Section 4.2, v N R is about 15% of b, which is 
about 1 0

1 3
- 1 0

1 4
 rad/sec. 

4.6. Experimental Realization of Photon Noise Reduction by 

Traveling-Wave Parametric Amplification 

The first observation of quadrature-squeezed light utilized four-wave mix-
ing near an atomic resonance in a cavity [10], as proposed by Yuen and 
Shapiro [61]. This method is limited by the presence of spontaneous-emission 
noise, which degrades the delicate correlations that occur between frequency 
components of the field. Using nonresonant nonlinearities, such as para-
metric amplification in crystals or Kerr effect in optical fibers, avoids this 
spontaneous-emission noise and allows larger degrees of squeezing to be 
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Fig. 10. The r fhomodyne spectrum, from Eq. (127), for various gains: (a) yz — 0.1 (short dash), 
0.3 (long dash), 0.5 (solid); and (b) yz = 1 (short dash), 2 (long dash), 3 (solid). 

observed. Parametric oscillators, either below or above threshold, have been 
used to produce large reductions of photocurrent fluctuations below the 
standard shot-noise level (SNL). These measurements have provided detailed 
confirmation of the validity of the quantum theory of light and the theory 
of photodetection. 

This section will review a particular method of generating wide-band 
squeezed light—parametric down conversion in a single-pass amplifier. This 
is made possible by using recently developed varieties of nonlinear optical 
crystals and/or pulsed lasers as pump. This method produces squeezing over a 
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wider bandwidth than occurs in a parametric oscillator, which is limited by the 
cavity linewidth. Using nonlinear optical crystals rather than fibers has the 
advantages of less loss and lower acoustic-related noise. As shown theortically 
in the preceding, the squeezing can occur over a significant fraction of the 
phase-matching bandwidth, which can be typically 10 THz for a 1-cm crystal. 

The first observation of traveling-wave, pulsed squeezing was made by 
Slusher et al. [62], using a continuous-wave, mode-locked, frequency-doubled 
Nd:YAG laser at 532 nm as pump and two K T P crystals as parametric 
amplifiers, as shown in Fig. 11. The pump-pu l se train, with 100 ps pulses 
separated by interval 5 ns, was passed once through two 5mm long K T P 
crystals, oriented back to back to compensate for beam walk-off caused by 
double refraction in the crystals. The crystals and polarization were oriented 
for type II phase matching, with pump polarization horizontal relative to the 
vertical ζ axis of the crystal. The generated signal photons were produced in 
pairs symmetrically detuned from one half the pump frequency (wavelength 
1,064 nm), with one being polarized vertically and the other polarized 
horizontally. These fields were superposed to produce linearly polarized 
squeezed light at 45° from the vertical direction. With peak pump intensity 
2 MW/cm, the parametric gain was 1.3 dB (factor of 1 0

0 13
 = 1.35), which 

produces a weak down-converted signal. 

Homodyne detection was accomplished by splitting off a portion of the 
1,064-nm laser beam before frequency doubling, and recombining it with the 
down-converted signal at the same frequency. This local oscillator (LO) beam 
was rotated by a λ/2 plate to match its polarization to that of the signal. A 

SQUEEZED 
KTP IR 

Fig. 11. Experimental appara tus used to generate and detect pulsed squeezed light by Ο Ρ Α . A 
mode-locked N d : YAG laser is doubled to form a green beam to p u m p the Ο Ρ Α . A port ion of the 
ir is delayed to serve as the local oscillator for the balanced homodyne detectors D{ and D2. The 
output from the current spectrum analyzer SA is shown in Fig. 12. (From [62]). 
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delay was also introduced to overlap temporally the LO pulses with the signal 
pulses. Using a pulsed LO leads to the concept of stroboscopic homodyning, 
in which the detection efficiency is enhanced at precisely those times when the 
squeezing of the signal is the strongest. 

An essential point for making sub-shot-noise measurements in practice is 
the use of balanced homodyne detection [56,63], as shown in Fig. 11. Because 
the LO is not truly shot-noise limited as assumed in the ideal theoretical 
treatment given in the preceding, excess noise above the SNL is present. 
Reduction of this classical noise in one signal quadrature can indeed be seen 
(classical squeezing), but this cannot be identified as true quantum-mechanical 
squeezing until the noise drops below the SNL. This can be observed by using 
two identical detectors at the two outputs of the beamsplitter, and subtracting 
their signals electronically. Ideally, the classical wave noise cancels, leaving the 
quantum noise. The subtraction can be done using a microwave circuit 
element called a hybrid junction [64] or, as in Fig. 11, directly at the junction 
of two wires. The figure also shows an LC circuit involving the summing 
junction that passes electrical signals with frequencies from about 45 MHz to 
75 MHz. 

The photocurrent noise power passing this filter and a second filter with 
bandpass 53 ± 0.5 MHz is displayed in Fig. 12 as a function of LO phase, 
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Fig. 12. Electrical noise power from the balanced detector in Fig. 11. Dotted line: shot-noise 

level; solid line: pulsed squeezed light. The horizontal axis is the phase of the local oscillator, 

varied in time by the P Z T in Fig. 11. Noise reduction to below the shot-noise limit is seen at 

certain phase values. (From [62]). 
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which is controlled by slowly moving a mirror with a piezoelectric translator 
(PZT in Fig. 11). The dotted line at - 64 dBm is the SNL of the LO, obtained 
by blocking the down-converted signal beam. The solid line shows the noise in 
the difference signal with the signal beam unblocked—at certain values of the 
LO phase, the noise drops below the SNL. 

A physical interpretation of this result is that the two beams striking the 
detectors are "twin" photon beams, i.e., are exact copies of one another. So 
each time a photon strikes one detector, a companion photon strikes the other 
detector. It is thus clear that it is necessary to have a high quantum efficiency 
for the detectors to convert each photon into an electron. Otherwise, decor-
relation of the signals would occur, and the intrisically quantum features of 
the light field would not be seen. A noise no lower than the SNL would be 
obtained. The detectors used are typically solid-state photodiodes (such as 
InGaAs) operated at room temperature with quantum efficiency around 90%. 
Another important factor is the homodyne efficiency, which depends on the 
spatial overlap of the signal mode u(r) and the LO mode uLO(r) at the detector 
surface [64] : 

If this factor is much less than unity, sub-SNL detection will not occur. With 
care, this quantity can be made greater than 90% [64]. 

Although the maximum amount of noise reduction shown in Fig. 12 is 0.6 
dB below the SNL, somewhat greater noise reductions have been observed. 
Hirano and Matsuoka, using a similar set-up as in Fig. 11, but using a more 
efficient down-conversion crystal, B a 2 N a N b 5 0 1 5, observed a 1.1 dB reduction 
from about 1 MHz to 70 MHz [65] . At the present time, the largest quadra-
ture squeezing has been obtained by parametric oscillation in a cavity, where 
the noise was reduced by a factor of two (3 dB) below the SNL [64]. 

The previously discussed experiments [62,65] used cw, mode-locked lasers 
to pump the down conversion. Consequently, the signal produced was mod-
ulated at the mode-locking repetition rate (200 MHz in [62]). This created 
strong rf components in the homodyne spectrum at this modulation frequency 
and its harmonics, which were difficult to subtract accurately, and so prevented 
sub-SNL detection within about 1 MHz of these frequencies. By using single-
pulse, Q-switched lasers with repetition rates in the 10 kHz range, these un-
wanted noise spikes can be moved to much lower frequencies, in principle 
leaving the entire spectral region above about one megahertz with noise less 
than the SNL. Using such a laser, Kumar et al [66] observed 0.8 dB reduction 
below the SNL using a set-up similar to that in Fig. 11. These authors also 
pointed out the interesting fact that a multimode, non-phase-locked, pulsed 
laser could be used to generate squeezed light by down conversion. Using 

η = utQ{r)u{r)d
2
r . (133) 
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arguments concerning temporal modes, analogous to the discussion in Sec-
tion 3.5 for SRS, they pointed out that the homodyne technique measures 
the operator [67,68]. 

where </>LO(0 is the time-dependent L O field and E
i+)
(t) is the signal-field 

operator. This integral is the temporal analog to that in Eq. (133) for the spatial 
overlap efficiency. Thus, by properly choosing the LO field </>LO(0> a certain 
time evolution of the signal field can be projected out and measured. Kumar 
et al found that by using a portion of the multimode pump pulse before fre-
quency doubling as the LO, as in Fig. 11, the part of the signal field that is 
squeezed is projected out and measured. This produced sub-SNL detection 
even though the LO field changed on every laser shot due to random phases 
between longitudinal laser modes. In this sense, they generated and detected 
squeezing using an incoherent pump field. 
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